Accelerated portfolio optimization with conditional value-at-risk constraints using a cutting-plane method
نویسنده
چکیده
Financial portfolios are often optimized for maximum profit while subject to a constraint formulated in terms of the Conditional Value-at-Risk (CVaR). This amounts to solving a linear problem. However, in its original formulation this linear problem has a very large number of linear constraints, too many to be enforced in practice. In the literature this is addressed by a reformulation of the problem using so-called dummy variables. This reduces the large number of constraints in the original linear problem at the cost of increasing the number of variables. In the context of reinsurance portfolio optimization we observe that the increase in variable count can lead to situations where solving the reformulated problem takes a long time. Therefore we suggest a different approach. We solve the original linear problem with cutting-plane method: The proposed algorithm starts with the solution of a relaxed problem and then iteratively adds cuts until the solution is approximated within a preset threshold. This is a new approach. For a reinsurance case study we show that a significant reduction of necessary computer resources can be achieved.
منابع مشابه
Three steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کامل